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Introduction

tem and oscillation excitation mecha_
lication in revealing the generation
radio sources and the wave interac-

and magnetosphere as well as the exci-
n space.

oscillations excitation with ampltude
mplitudes is demonstrated on thd basis

coorrlinate or the excited system rb, 6r.'S:;tfl[t[i #:]t'f":il,.ft:o:?g"Ti: :tl:tooscillating system with externrl po*"
tivated by servey the known from SHF
mechanics, technics of charged particl
in plasma and other medium based on
inhomogeneous interactions etc. Il -7,mi, to be known as a possible cosmic

,1 An invesfigation supporteri by The Bulgarian Natioual Foundation,,scientific Re-search" under Contract No TH B0rlg2.



ged particles are accelerated by collisions struc'
tures-[l 1]. In every particular case and mode s been
revealed differently - self-modulation, gro How'
ever all these mechanisms are based on a c ternal
force acts nonlinearly as regards the particles motion coordinates. In the pre-
sent work it is shown, that the mechanism of LF oscillation excitation with
discrete set of possible stable amplitudes is connected with phase capture and
dynamical phaie adaption, providing the necessary energy contribution to the
oscillations- drrring the external inhomogeneous influence. References as LF
and HF are used onlv relativelv. In the common case, the phenomenon is mani-
fested in all frequency bands in oscillating systems undei the action of exter-
nal HF periodic force, nonlinear to excited systems coordinates. When the ex-
cited syitem and the power supply source interact, iorce is formed, which is
frequency or phase (in general-- argument) modulated in character. Charac-
teriitic system argument is adaptively tuning phase, providing the most ad-
vantageous interaction between the excited oscillation system and the high
frequency power supply. Thus, the method of oscillations excitation is called
svmbolicallv short "argument metho- 

The ohenomenon oicontinuous os
discrete value set of possible station
tically for two cases (iwo analytical c

ty of harmonic-force-external action is
ce is subjected to the lower equilibriu
when the external harmonic f orce acts o

Analysis: the nonlinearity of external harmonic
force is presented by a-function

The motion in different oscillating systems under the
action of external periodic force, nonlinear with respect to the system coordi-
nate in general may be described b. the following equation:

(1) i+Zaoi +a1x+f(x):F6(x, t,),

where x is the generalized system coordinate, 6o is coefficient describing the
system dissipative properties, /(x) is function characlerizing the excited system
nbnlinearity, F-o(x, f,) is external periodic force nonlinear to the system coor-
dinate x, t, is real time.

Taking into account the wide variety of d by Eq. (1)' Ior
the sake of analysis we select an concretized ed the pendulum
motion. The pendulum is common oscillating isomorphic- to a

variety oI physical , phenomena, particularly requency driven
quantirm-mechanical Josephson junction, charge density wave transport, cosmic
particles in certain conditions etc. [12].- 

The equation describing penduium swing caused by the action of a force,
nonlinear to the coordinate, can be written in the form

(2) i+Zaox+r,rf;sinx:Fo(x, t),

where x is the angular distance to equilibrium, (D0 is the resonance frequency
of the smpll oscillations, t:@ot.
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(3)

(4)

(5)

#: #: srn1f,e1 :o(v;.

,.."ff,"$lopl: 6jf) 
and G(v) in Eq. (a) are easilv expressed, taking jnto

" x(y):zurrrin(!), G(y): lh
vl --z-

Substituting Exprs, (3) and (a) in Eq. (Z) we obtain

ffi + B'l : - 2s o# + r(x, r)G( y) *(Fr- 1)y,

where 26d:& and F(x, i : 
Y, (Fr-t ) corresponds to the frequency

detuning, B-1.
The transition to new variables makes the system quite similar to a linear

We assume that solution of Eq; (6) is:
(7) y:Qcos Y:Rcos (Bt-rpn),
where R ln9 eu dre os-cillations amplitude and phase. ,

- I nc dependence of normalized time / on langle y can be expressed in
agr.eement with Exprs, (4), (5) and (7),as

l-,'
-V:sign.\, J sinx'dx' :2tin$,

0

Y

(6)

(B)
I

4 ,,1 R\E"l z /'

the

2n

I
0

I/o:.F(e)

Considering Expr. (8), normalized oscillations period is:



/ p\
where K(;) is the full elliptic integial of first kind.

The shortened (averaged) differential equations [1, 2, 3, 13J for amplitude
Q and phase rqu can be written as:

(10a)

(10b)

2n,dR. I r(;): -f,,u J I sin YdY,
0

Zn
dtl,, I r
<-#',: -frF J r cos YdY,

0

where the sign ( ) denotes the procedure oI averaging by time t'

L:26dPRsin Y+ F(x, t)G(y)+(F'?- 1)R cos Y.

Taking into account that
2n 2r

.f sin'?Ya(fidY: / ilffi
dY : 4K(+) *11 [' (+) -n (+)]'

where E(.) is the full elliptic integral of second kind,the shortened equations
(10) take the form

(lrq) | ,#,:-foe{+N(*). #t'(+)-^(+)l}

- t [' nt*. t)O( v) sin YdY,
z"g J

0

,dQu, t f Et.- ^\/'t/.,\^^-\uru/--[]3-1.(;): -ffi J F(x, r)aQ) cos YdY-ff'
n

Now, let us concretize the function Fo(x, l) as follows:

(12) Fo(x, l)-6(x)Psinvt'
where S(x) - 6-lunction, P and v are the external harmonic force amplitude
and frequ6ncy cornespondingly. We assume that. v:Nrrl^0, where N:t,2,3, "'.
Taking into account the sotltion form (7), 8-function 6(x) can be presented
in the form

s@: F l#

(1 1b)

(13) 6(Y-Yo,/),

where the values Yo,, are determined by the equhtion

(t Q. x(Yo,r):O.

Considering equations (13) and (14) the equations (11) become
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(l5b)

Not

:o(+)

(16)

(15a)

From Eq. (9) we obtain

(r7)

i,vhere

(1Ba)

(r Bb)

For stationary mode

the conditiofl 0- 1, which

*(z* +), ,:0, r, 2, s,.

2"Kc)
d\alp---;F-'

ing that #:###:#'##:-u6fr'rand that 
"(+):1, the Eq. (15a) can be rewritten as

<ff >=l -0n{, +N (+). # [, (+)_^ (+)}.

-,^!^u *[s in vr (+) - "" "t (+)]

Introducing the designationt(])=t, and taking into
(17) we can write

t(!f):t,+i",*) ui,nr(#):(-r)0,

no stationary solution

account Exprs. (9) and

sin vd,

dD
( A ): e(Ri q"), j

dq..
( #):9(Ri q")' : r

' : oo -l'g(R, o"): -uan' .

.. 1

(e(R, <p"):0 and g(R, <p"):0) from Eq.
can be rewritten considering Expr. (17) as



Denoting h: + (the module of the elliptic function), from Eq. (l8a) we

can flnd the second condition of stationary mode in the form

(1e)

(20)

(22a)

(22b)

I trfal-(l - ea)r{(h)l- sin vl, : s.P

When ft-O the Eq. (19) is simplified

* sin vlt : Q,

and corresponds to the condition

(2r) lPl>4nlekz.
For the sake of stability estimation we can rewrite Eqs. (18) under the

condition ,t.tO as

e(R q,) - - 26dh ' #isin vlr,

9(R, e"): - %n'
where P: l.

The characteristic equation can be written as

Lz 
-?,,(e p * g,pl + e * g, - e ; g n : 0,

taking the final form

(23) x,(l,-eo)- 0,

where €p, gq, gp are the corresponding partial derivatives.
From Eq. (23) we find l"r:Q, Lz:€ni The stability condition is: I2:e*a0

i. e. eo< 0.

Using Eq. (22a) we obtain €*:-26a +# sin vl1.

Comparison with (20) reveals the stability condition in the form

(24) ea: -46a10.
As the value 6r>0 apriori, the inequality Q\ is fulfilled and the solution

for odd N describes discrete set of stable stationarv oscilltions.

Analysis: The external harmonic force acts over
a trajectory zone with a finite length

We consider the equation, describing pendulum motion,
under nonhomogeneous action of external harmonic force, in the forrr

(25)

where

i +zaok 1sin .16 : e(x)P sin vl,

,(,):{ i ;fi:
xl<d, d<l
)cl>d



Fig. I

determine the trajectory zone of ttre external influence.
Conditionallyi we irumber the time moments, determined by the zone of

action, as it is shown in Fig. 1.

. T!. pendulum motion in the time intervals f4n, 4na1),l4na2,4na3l, . ,,
(out of the action zone) can be described by unperturbed-eluation

(26) ff+sinx:Q.

Multiplying Eq. (26) with ff and integrating, we find

(27) +(#) -ros x: w-r,
where IZ tg an^rltegration.constant corresponding t_o the full system energy.

From Eq. (27) we obtain

dx l^.____ . .r
ff: tl2w-4sinaf .

the designation u:t and sin il-?and, considering Eq. (28),

=f,-o: 
J

Further on we use
F(.,.), so

(28)

Introducing

we can write

d2s) t-cr: ta

. where er-constant.

the incomplete normal elliptic integral of first kind

: F(<p, ft),

where the amplitude e:am(t-a, k), m:k2, k is the modul
Iunction, m is the parameter of .the elliptic function.

In the case under the consideration a2:!, bz:+<l (n
with the condition -n1x4n),

(30) ,twwo:Y-l , tn: r, slnq: lv-
Y=-

of the elliptic

correspondance

I



The solution of the equation (26) can be presented in the following form

(31) x:2 arcsin [,t sn (l-u)],
where sn ( . ) is sine of the amplitude (Jacobi's elliptic function).

Taking into hccount the dissipation, Eq. (26) becomes

(32) ff +ri"x:-26d#.

Multiplying Eq. (32) with ff and integrating, we find

df lldx\z I d. f ldx'f.-atL-t \E)- cos x l: -26a8 J \;')o'
or

(38) ry: +l -2s, f (#\'atl.dt dtl --aJ\dtJ 
J

For a ha'lf of the period, from (30)'and Eq. (33) we obtain

2Lm: LW: _,U, I W\ ". Using (31), we can,write

(34) #:rucn (l-o)
and

[ (+\'dt:Akz f cnz(t-a\dt,
J \u'l .l

where cn(.) is cosine of the amplitude (Jacobi's elliptic function).
Noting, that [ ,", (t:-u) dt : I IU'(o*(l- o.), k) - (t - pz11t-a)l and

amlt-aa2K@), kl:d.m(t-a; k)*n; E(q+r, ft)=E(q, k)+2E(k\,,where E( . , .)

is in complete elliptic integral of second kind, hence [ ,n(f'o'rJ)d.t': #
J,

x [2E(A)-(r-k')2K(k)]. .

For the half of period we have

(35a) 2Am: LV, :- 166,r IE(A)-(l -kz)K(k)|,
(35b) 4k:- f tvrl-c1_pz7 K(k)).

In the case of small ft, 0< ft< 1, we can find
.; ,'t' t+2K(hl I(36) 

) 
sfi(t-a)dt = J cos2 (l - a) d,t -+ .

Combining Eqs. (34), (35a) and (36), we obtain for the half ,of period

(37) Lln--2n60fti., Ak--n6ok.
Let us introduce the following designations: , .:

Lt4n- ttr+t'tt o, Ltt n+z: t+n+s-t b+r.
l0



The bordering
with respect of the

points are i: f-d and the
time points t4n,sva afrd t4n,,2,

I t: t4n,^u* I -.For{ }wehave
I t:t+n+2,^u* )

can determine

are symmetrical
Fig. l).

Using (30) we

(38)

Combining Eqs.

(3e)

vhere ro: r/T=
Let us assume that v)1, then

When 0(6r<1 and v>1, the

q:arcsin('#)

(38) we find

(#,u)-o[,.*"#,-)]

,pu:arctgffi-l-n.
frequency al:l and

(29) and

Lt.r:2f

-zlr<n>-o(+,r)]=z[ r<(o - +],
| | srnd \l(40) Ata62:2lo (*, E) -n\arcsir-*, n)):,tto;-zl<1\-ft1,

where F( . , .) is incomplete elliptic integral of the first kind,
The expressions (39) and (40) are valid when &>sinf .

Further we use the approach developed in [15] on the basis of stitching
the solutions.

In the region lxlld,noting that d<1, we can use the linear approxi-
mation of theequation(26), i, ".ff+ZArff+x:frsinvl and its solution in
the form

P

y, : Qs-6at sin [o(l-y)]+#- sin (vlaqu),
V(v'- l)sa(2v6r)z

PP
x=:Rsin(r-y) + +usinvt, T-Rror(t-y) *, 1ftcosvt. :

Now, let us consider the region out of the acting zone l-d, d], but clo-
sely _t_o that zone, i. e. lxl>d.,lxl--d.

Under these conditions we can write:
x:2arcsin [ft sn (i-a)] : 2arcsin {k sn [2l{(ft)-(l--r*)}} - zkl2K('h) - 0-a)].

It follows that the moment ta41 c&tL be found from the equatjon

(4r) 2 hl2K(h) - (t 
n oa r- a)f- d

ll



whenff--2P.

From the condition of lacking of x and ff interruption in the point
t:t4,ra1, it follows

g2a) 
Inrtn (t+o+r-y)i#rin vt4nt1-d,

(42b) 
| R.or (t+o+t-y)-|" #cosvlnn..;r= -2koo+r.

Solving th.e system (4o) we can obtain formulae for (:ftnn*, and y:yan."1.
, . Analogically, when going out of-the acting zone, i. .."for ilie b"litiit : tana2: t an+rf Ltan*r, whe{

:. Ltto+t: t4oa2- t4nay,

P
(aa\ 

| 
n sin (t nn*r1 Lt nn*r i + fg sin [v(lan1r 1 Lt nral)]-- d.,

(43)

we can write

II

(45)

the equations (42) give L,tnnar-

P

v A,tan'r141 ,

2d

(44b) 
| R.o. (t."+r+ Lt4n*r-:i +t $cos [v(lona, * Alan".r)]=u -2hnn*r.'

P ': ' :i

-R cos (fnn*, -y)+v ft cos vt+n+t

Taking into account Eq. (42b), Expr; (48) becomes

(46) Ltanar:rL
'-Anll ., .:

Let us introduce the designation i :

(47) L,knn-hn6r-kan,

Compaiis.on (.47) with (37) re.veals L,hnn=-n6ohrn
Ugns[cleling, (39),. we can write

(48) Ltnn-lK(kn)--*.

. Using Eq. (44b), under the condition (45), we tind:_

(49) ' h4n12-*{-*1.", (t+n+t--y)* RLtan+tsin (lnn,,, y)
t

t2



Substituting

(50)

Analogically

(51)

(52)

(53)

(5aa)

(54b)

P "P. TI v4*
+v v#T cos v/*o*, -"+ Ltu+rsih vla".*,, 

).
Eqs. (a2) and (46) in Eq. (49) we obtain

han rn-.kno*, - d;sin vfno*r.

we can write the fqllowing e4uations l

At+o+z=2K(n**") _#, ,

Lk+n+z=-n64k412:+2, 
,

. kto+s:k4na2-lAka42,

t4n+B:ttr*z* Lton*2.

For the region 4n.+B-*4n+4 (see Fig. 1) we have (R:Rnn+s, y:fan+a)

trf sin(d,*r--y) - i+ sinvtnnas--d,

+:.ftcos(lan1s-T) -v # cos vl4,r+s-2kno*r,

ttn++:ttn+g* Lt+o+a, -: l

(55a)

P
( s in (1a,,1 s * Lt u+ a- T) - i+ sin v(la,,p3 * 4l r+ r)-d,

,P
(55b) I R.or (t4n+a+ Lt^*r-r1-ujlcos v(lnn*sa Ltan,s)-2hanaa.

Assuming, that

comlining Eqs. (54a) and

(56)

and

vA,tar'44I,
(55a) we find

at

P'

'# cos vl+z+s

it follows
)

Lt; ^ag.;:-, tu+t : tr,q,l Ltt.+a
: *ln+x 

I

account Eqs. (52) and (50), we can write

ht n+z- k+ n- nE oka n - =:- 
sin vlnr.,1.

.,.4n

the condition (56), Eq. (sSb) can be rewritten

R cos (lnn*r- v) -

From (54b)

9'l
Taking into

Considering

l3



IP
(58) hn,+n=*J n.o. (tan+s-,t+n+r'1- u jlcos vlan,.e

\
P)

- RLt a,n+asin (/n,a3- y ) + u, A Lt nn+"sin vl4 r*, 
{.
l

Using Eqs. (5a) and (58) we can write .

(59) k+n++-k+n+s++;sin vlanps.

Comparison (59) with (52) and (53) reveals

h+n++- k+r+r- xE aka62+ +sin vfan-"a.

Combining Eqs, (46) and (48) we find

t n^*, -l2K (k4,) - *1. fi; *, n,-zK| k ) 1- t o,'

In analogue from Eqs (51) and (57) we can obtain

trn++:lzNlno^*r1-.*..*"*1.ffi*'n,*r-2K(kaos)*t+,+z'

In the long run we have obtained the following system of equations:

(60b) ku+z-k+n- n66kan- #;ri"vtsls,

(60a)

r60c)

(62a)

(62b)

tnr*2=ta,t2K(kL"),

t u+ +11 u + z + 2l<(k +, + r),

ht: ko,

v(ta-t):)1sIV.

(60d) knn++-k+n+2-n64kan42+ J- sin vtnn*4"
"'Ln+2

The spectrum of possible stationary amplitudes of continuous oscillations
is determined by the expression :

(61) v(taoaa-tan)- 2nN,

where N:1, 2, 3,... is the ratio of frequency division.
The equation (61) can be written also in the form

v[K(ftr,) + K (kro+lr)]: nN.

Below we show that N has to be an odd number.
Designating five successive time points as ts, tb tn, ft and ta and corres-

ponding values of & as hs, k1, ks, ks, and ka (in analogue to as it has been
done in Fig. 1), we can write the following conditions lor the stationary mode

The equation (62b) follows from the condition of oscillation synchronizalion
with the external excitment.

The Eqs. (60) can be rewritten
r4



hz: ko-nAoko-&sin vfs, k+: kz-rEakr*frsinrto,

t2: to a2K(ko), t +: t2+21<(k).

If we consider the condition of symmetry between the upper '{4n-4n121
and lower {4n+2-4nE4} periods, we can fi;d that it is pos^sible'to havei:he
symmetry only if N is an odd number, i. e. N:2lll, L:0, L, 2, 9,..., and
1t the next equality is lulfilled: sinvp+2K(,€):-sinvl.

From Eqs. (41) and (42) iL follows 2vK(k):2"p+!) u"a

(63a)

(63b)

approximate formulae

can write

(67) :

sin v/o: -sin v/e,

COS Vto: -CoS vfo.

Combining Eqs. (35b), (62a) and (63) we can write

(64) 1ffi' 
[e(ro)- (-k))t<(ko)J-sin Vro:Q,

which in the case of ft-O becomes

(65) nokoS-rin 
v/o:6.

Solving 9q. (05) we can determine the initial phase lo.
Apparentlythereexistsanexcitationthreshold'

(66) lPl>4n6okz.

For the P values above the value P:4n}ak?,, a disctetization of the possible

reshold condition (66) coincides with

::1,:[" #'s n,[lii",ll" 
nonrinearitv or

lity examination it is enough to .on.ialllTr'Jt{' fr:it 
tlr" 

t"*t :ilftem 
stabi-

From Eq. (60b) we determine the variation i

/ o P \-. P6kao+z: (t - naa + iilsinvta,az)6k+n- " *-a;(cosvtno*r)Etana2.

Taking into account the relation tl6l ry:+l# - K(,€) 
I 

and also the

Considering (67), from (60c) ,we can find the following variation:

6t anq a: 6tao*r* 2&6 k+n +z : tknn*n (t - "a 
r+ ftsin 

vfnn*r)6ft.n

I5



+ (t -*up\tt2, 
t

\ o &1n cosvta'a2)Etnn+n'

Remembering that k+n+z: ktn:ft,, sin \t'n+z: -sin vl6, cos v/anr.n: - cos Vlor

fronr Eq. (64) follows that 
Ptt'l.lt:n+' 

- 
Psinvln

4kin - - nb6' so' we can write

6 ku+z:(1 - 2nEr)DAn, + u7fr(cos vts)Fta na2,

6lnn+. :! nolt- 2n6)6k4n +(t * + vpcos v4)von*r.

assume lhat 6knn*r:l,6ftan and 6t+n++:7,"6ttn+2.
we can write

(l -2n6o- I) 5ft1n + 
" #(cos v/o)bln,*2 : 0,

*nr(-2nlo)Ekan+ (r +f vpcos vto-l,)6t.,*o:0.

The characteristic equation has thc form

Lr-Iu(2-2nso + + v P cos vt) + (I-2n6r): g

and its solution is

r,,,: I - n'a-r ft vPcot"r, t{@Y_ t +%s;
The stability condition is: ll,r,,l< 1.
Apparcntly, the solution is stable when the following cqndition is satisfied I

Pv cos vlo<0.
Generally, we have proved that in the system under consideration oscilla-

tions with an arnplitude from a possible set of stable amplitudes c.an be excited.
The spectrum of the symmetrical solution amplitudes can be expressed as

2vK(ko):2"(+f,), I:0, l, 2, 3,. .. ' which gives the spectrum of amplitudes

h,o, K(ki:f**)+,1:0, 1,2, g,.., and an odd ratio of frequency division
N:21*1, l:0, L, 2, 3,.. .

Let us
Hence

Conclusion

It should be noted that the relation v:N(00 is complied
with in all cyclic accelerators; there v is the accelerating high-frequency field fre-
Quencli aro is charged particles rotating frequency, and N is acceleration, multi-
plicity reaching tens and hundreds. That is why, the above discussed stationary
oscillations are analogous to the movement oI "equilibrium" particle in cyclo-
accelerator. Particles, close to the equilibrium, in cycloaccelerators perform
slow phase qscillations. Their analogue in our system is the fluctuating appro-
ximation to stationary values of the oscillation amplitude and phase, In our

l6



ses of plasma pafticle interaction with
equation of (1) form is obtained with
this case 6a:or is ion-electron-neutral

is ion cyclotron frequency, e is electron

tromagnetic
inal magne-

:i,€'ifJf;
between E and Eo (longitudinal electric field) is : E: #UrY _ h4t,
where Qo:4n62ff is Langmuir plasma frequency, V A: _t+ is Alfven le-
locity, zr is plasma density. The condition for prasma nu#ttng is defined as, - M rorc'lfrRoA

"0, \ -;-, where Qo and l* are the waveguide radius and lenght,

t: #, ^o:4nP*#.
ergy- transformation efficiency in ilie
low-frequency oscillations demonstratesul low-frequency waves in the Solar

oI oscillation excitation are
of mechanisms of planetary
interactions mechanisms iir

I as the excitation of VLF
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' BoS6vlKAeHI'Ie ,,K'BaIIToBaHIlbIX" 
'ltole6aHtlI)I rIoA

BOSAerzCrBI4eM BHeIII] eil HeOAHOpOAIIOI4 CI4Jrbr

Bna)unup !,an7oe, Ilemp feoPeuee

(Pesror'r e)

AHa"rr.rruqecKl4 rlpeAcraBJIeHo rB,/Ie[lI4e Bos6y]KAeFII'Ir He-

saryxaloilurx KoJre6aHrzii c alrn.laryAofr, npnHaA,'lexauefi K Al4ct{perHoMy pflAy
Bo3rvrox{Hl,rx ycroIzqLIBbIX aMnJIIzTyA AJIfl AByX cJlyqaeB - 

Bo-nepBblx' KorAa
BHeuHee BosAerlcrBr4e, npeAcraB/TeHr-roe 6-Syur<qzefi, rp14KJIaAbIBaerc-fl K HI4x<-

Heri paBHOBecHoIl TOr{Ke TpaeKroplltz xone6a:nufr ],I, Bo-BTopbIX - 
KOrAa BHeu-

Hfls rapMoHlrqecKafl cz,rra BosAeticrnyer B 3aAaHFIofi goHe rpaeKTopr4Ll c KoFIeq-

HOIZ [DOTfl )KCI{HOCTbIO,
llfegcrannerlHbre MoAeJrblrar cr,rcreMa r.i MexaFII43M BoB6yxAeFIIil KoJIe6aHI'Ift

Moryr HailTrr [przMeFreHr4e B pa6ore rro BbrrrBJreHl4ro MexaI-II43MoB rel]epa\Lrr4 pa-

Arlor4croqHlrKoB B MarHr.rrocq)epax r,/rairer r.{ MexaIJI4BMoB BsaLIMoAetIcrBI4fl BOJIH

r rionocipepe I,I Mafl{Llroc$ep-e 
-3ettlIl, a raK)Ke Bo36yx(AeHufl HtI soIH B oKo-

,'IO3eMI{OM rlpOCTpat{CTBe,

IB




