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Iniroduction

A modelling sysiem and oscillation excitation mecha-
nism are presented that might find application in revealing the generation
mechanisms of planetary magnetosphere radic sources and the wave interac-
tion mechanisms in the Earth ionosphere and magnetosphere as well as the exci-
tation of VLF waves in the near-Earth space.

The phenomenon of continuous oscitlations excitation with ampliude
from descrete value set of stationary amplitudes is demonsiraied on the basis
of a common model — an oscillating system under the action of external pe-
riodic force, nonlinear regarding the excited system coordinates. The pheno-
menon includes as particular case cyclotron process of charged particles acce-
leration. The phenomenon manifests itself in oscillating systems under the in-
homogeneous action of external periodic forces.

The Nonlinear Theory of oscillations consider mainly the action of perio-
dic forces which do not depend on the coordinates or are linear with respect
to coordinates of excited systems (the classical parametric systems) [1, 2, 3]
During the last years, linear excited parametric resonance in the presence of
a quadratic, cubic or periodic nonlinearity has been investigated [4].

The paper deals with the phenomenon of oscillation excitation under the
action of an exterdal nonlinear HF force, which is nonlinear as regards the
coordinate of the excited system [5, 6]. Such system may be considered as au-
tooscillating system with external power supply [7]. The investigation is mo-
tivated by servey the known from SHF and physical electronics, radiophysics,
mechanics, technics of charged particle acceleration, processes and phenomena
in plasma and other medium based on the inertia properties of the particles and
inhomogeneous inieractions ete. [1—7, 8, 9, 10], the problem examined by Fer-
mi, to be known as a possible cosmic ray acceleration mechanism when char-
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ged particles are accelerated by collisions with moving magnetic field struc.
tures [11]. In cvery parlicular case and mode the interaction mechanism has been
revealed differently — self-modulation, grouping, phase selection etc. How-
cver all these mechanisms are based on a common principle: the HF external
force acts nonlinearly as regards the particles motion coordinates. In the pre-
sent work it is shown, that the mechanism of LF oscillation excitation with
discrete set of possible stable amplitudes is connected with phase capture and
dynamical phase adaption, providing the necessary energy contribution fo the
oscillations during ihe exlernal inhomogeneous influence. References as LF
and HF are used only relalively. In the common case, the phenomenon is mani-
fested in all frequency bands in oscillating systems under the action of exier-
nal HF periodic Torce, nonlinear to excited systems coordinates. When the ex-
cited system and the power supply source interact, force is formed, which is
frequency or phase {in general — argumcnt} moduliated in character. Charac-
teristic system argument is adaptively tuning phase, providing the most ad-
vantageous inferaction between ihe excited oscillation system and the high
frequency power supply. Thus, the method of oscillations excitation is called
symbolically short “argument method” [5].

The phenomenon of continuous oscillation excitation with amplitude from
discrete value set ol possible stationary amplitudes is demonstryted analy-
tically for two cases (two analviical conditions) — first, when the nonlineari-
ty of harmonic-force-external action is presented by B-function and the influen-
ce is subjected to the lower equilibrium point of the trajectory, and, second,
when the external harmonic foree acts over a trajectory zone with a finite lenght.

Analysis: the nonlinearity of external harmonic
force is presented by s-function

The molion in differcnt oscillating systems under the
action of external periodic force, nonlinear with respect to the system coordi-
nate in general may be described by the following equation:

(1) X+280% +00x +f(x)=Fo(X, £

where x is the generalized system coordinate, 3, is coefficient describing the
system dissipative properties, f(x) is function characterizing the excited system
nonlinearity, Fy(x, ¢,) is external periodic ferce noniinear to the system coor-
dinate x, £, is real time.

Taking into account the wide variety of system, described by Eq. (1) for
the sake of analysis we select an concretized equation described the pendulum
motion. The pendulum is common oscillating model as it is isemorphic to a
variety of physical phenomena, particularly such as radio-frequency driven
quantum-mechanical Josephson junction, charge density wave transport, cosmic
particles in certain conditions ele. [12].

. The equation describing pendulum swing caused by the action of a force,
nonlinear to the coordinate, can be written in the form

2) X+ 28, %+ @8 sin x = Fo{x, £),

where x is the angular distance to equilibrium, @, is the resonance frequency
of the small oscillations, f=wf,.
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In order to integrate the nonlinear Eq. (2) using the methods of the
Theory of Nonlinear oscillations, we introduce new variable y and nonlinear
tlme 7. So, the strongly nonlinear reactive term sinx in Eq. (2) may be exclu-
ded. The transformation of variables is performed by the scheme proposed by
K. A, Samoylo [13], thus:

) - x
3) y=signx\/2 f sin x'dx’ = 23{11%.
1]
df _n dx _ ¥ _
(4) = &= sy =0

Functions x(y) and G{y) in Eq. {(4) are easily expressed, taking jnte
account Expr. (8):

(5) - x{(y)=2 arcsin(%), G(y) =

i

A
JI-T
Substituting Exprs. (3) and (4) in Eq. (2) we obtain

®) By= 95,2 Fx, 90(5)+@E— 1y,

where 25({:233 and F{x, t):'PU—(JZ’—E}, {$°—1) corresponds to the frequency
g
detuning, f~1.

The transition to new variables makes the system quite similar to a linear
concervative system, whose state is represented by a point, moving jn phase
Space on a circle with constant angular velocity. For such a system, common
methods of Nonlinear oscillation theory can be applied. It should be mentioned
that in terms of the new valiables all initial system features are kept. Trans-
formations (4) and (5) are appropriate if conditions G(0)y=1 and G(y)>0 for
all y values are fulfilled. Obviously Condition 1 is satisfied (see Exp. (5)).
Condition 2 is fulfilled for —r<x<n or —2<y<?2, Further consideration
will be performed for this y values interval. Physically it means, that initial
conditions and external action provide pendulum swing with angle amplitude
less than =+,

We assume that solution of Eq. (6) is:

D) y=Rcos¥=Rcos{Br—¢,),

where R and ¢. are osciliations amplitude and. phase.
- The dependence of normalized time ¢ on angle ¥ can be expressed in
agreement with Exprs. (4), {6y and (7) as

¥

_rr dy
©) s B / i T e
B \[ 1— 5 cos? ¥

Considering Expr. (8), the normalized oscillations period is:

2
1 ay 4 R
(9) To= J T (%)
J ] =3 cos? ¥




where K(%) is the full elliptic integial of first kind.

The shortened (averaged) differential equations [1, 2, 3, 13} for amplifude
R and phase ¢, can be written as:

2
(10a) (i—f)'—: *51;_;3 ] L sin ‘¥d'P,
0
In
d
(10b) ()= —_an;}—Rf L cos Wd'¥,
0

where the sign { ) denotes the procedure of averaging by fime 1,
L=28,BR sin ¥+ Flx, D)G(y)+(f2—1)R cos V.

Taking into account that
2

[ surwacae= fJ S a(R) 8 (B (2) k(L))

1—? cos? ¥

where E(.) is the full elliptic integral of second kind, the shortened equations
(10) také the form

(11a) 2Xy= —%B}i’{"”{(%)“‘ = B2}
- Q;B j’u Flx, ©)G(y)sin ¥d¥,
4]

2n
do, 1 : 31
(1 lb) (-a;)z T f F{x, ‘!)G( y) caos ?d‘P-—BQ—ﬁ°
G

Now, let us concretize the function Fy(x, £} as follows:
(12) F(x, t)=38(x)Psinvi,
where 8(x) — 8-function, P and v are the external harmonic force amplitude
and frequency correspondingly. We assume that v=~No,, where N=1,:2,3,...
Taking into account the solution form (7), &-function 3(x) can be presented
in the form

(13) = 3 [ s(r—Yo
o f

where the values ¥,, are determined by the equation

(149 _ x(¥o.)=0.
Considering equations (13) and {14) the equations (11} become



(152) | 2Ry ———BR{4K( )+%[E(§)—K(§)]

[GPSIII vt( ) %} i —{GPsin vt(‘z—ﬁ) % 3“},
a g
- do, BE—1
(15b} !<d_':)=— o

d¥Y d¥ dt dt 4% dt dt 1 -
dx T 4T af dx dr & dy ©  GiyRsiay and that (’(_2‘)

-—-G(—zﬂ-):l. the Eq. (15a) can be rewritien as

Noting that

(16) (B )____3;3{ 4K( )+ 5 [E(%)_K('_Q’i)]z:_
_Tg!? [sin_ vt (%) — sin vt (3—;)] .
From Eq. (9) we obtaiﬁ | |
17} p= Qviﬁg)'

Introducing the designation t(%)=tl and taking into account Exprs, (9) and
(17) we can write :

g(_:;i)____tl_i_if(i)' Sll‘l vt(sn)_ —I)NSiI‘I tho

Let us now consider two cases:
a) Case of even N (N=2/, [=1, 2, 3,...).

In this case sin vt(——)— sin vi ( ).._ 0 aml there are no stationary solution

(the oscillations are demped);
b) Case of odd N (N=2l+1, =0, 1, 2, 3,...).

In this case sin vt( 5 ) sin vt( 2) =2sinvi, ‘md

{ dT >=é(:‘?, | qmi

de,
(1= &R o)

where ™ pr gt ot
(182) (R, (pv)—f—BR{4K( )+ - [E(?)_ K(%)]——Tﬂ%sin vty,
(18D) g(;;), o) _' '_93—_* . ’

For stationary mode (e(R, ¢)=0 and g(R, ¢,})=0) from Eq. (18b) find

the condition B=1, which can Be rewritten consxicrlng Expr. (17} as I\( . ) =

x(z+)z012,3 v



Denoting & = % {the modute of the elliptic function), from Eq. (18a) we
can flnd the second condition of stalionary mode in the form
168
(19 —Pi" [E(Ry— (] —AHK(&)]|—sin vi;=0.
When £—0 the Eq. (19) is simplified

4115 k2

(20)

+sin v =0,

and corresponds to the condition
(2D | P} >4n5,42

For the sake of stability estimation we can rewrite Egs. (18) under the
condition £—0 as

(22a) e(R, §) = — 26,k — o sin v,
Be—1

(22b) BR, o)==

where $=1.

The characteristic equatmn can be wriften as

M—Mept Lo}t erBo—€r8r=0,
taking the final form
(23 A —ep)=0,

where ep, o, gp are the corresponding partial derivatives.
From Eq. (23} we find A, =0, ,=e,. The stability condition is: A,=e,< 0
ie <0

Using Eq. (222) we obtain ¢,=—23, +TIZ2 sin vf;,
Comparison with (20) reveals the stability condition in the form
(24} p=—43,< 0,

As the value §,>0 apn'on, the inequality (24)is fulfilled and the solutien
for odd N describes discrete set of stable stationary oscilltions.

Analysis: The external harmonic force acts over
a trajectory zone with a finite length

We consider the equation, describing pendulum motion,
under nonhomogeneous action of external harmmonic force, in the form

(25) X+ 28 % + sin x =s(x)Psin vi,

where
1, when | x|=<d. d<l
&(x)=

0, when | x|>d



|Zona of the
external
action

Fig. i

determine the trajectory zone of the external influence,

Cenditionally, we number the time moments, determined by the zone of
action, as it is shown in Fig, 1.

The pendulum motion in the time intervals [4n, 4n+1), [4n+2, 4n+3], ...
{out of the action zone) can be described by unperturbed equation

(26) o sinx=0.
Multiptying Eq. {26} with % and integrating, we find
I [dx\2
©n —Q—(W) —cosx=W—1,

where W is an integration constant corresponding to the full system energy.
From Eq. (27) we obtain

dx - ; i, X,
(28) = i\/?ll’/—-—él smﬂ-é— .

X

Introducing the designation 4=—

we can write

and sin #=z and considering Eq. (28),

, where a-constant,

_ dz
t—a= f—i: \/(l _2%) ('l;i Hza)

Further on we use the incomplete normal elliptic integral of first kind
F( * ')s 30

129 t—a=4a /

b

dz
\/(a‘d_zﬁ)(zs_._bﬂ)

=F(o, k),

where the amplitude ¢=am{f—uo, &), m=4% £ is the modul of the elliptic
function, m is the parameter of .the elliptic function.

In the case under the consideration @®=1, b3=~z—’<1 (in correspondance
with the condition —m<<x<<%),

sin X
2

(30) CENLANS S T

Ve
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The solution of the equation (26) can be presented in the following form
31) x=2arcsin [Zsn{{—a}],

where sn{+) is sine of the amplitude (Jacobi’s elliptic function).
Taking into account the dissipation Eq. (26) becomes

(32) ¥ sin x=—28

dﬂ a dt

Multiplying Eq. (32) w1th EX and integrating, we find

d I /dx : dx 2
o [~2— (EE)__ cos x.-|= — 28,5 f (W) dt
or

& w4l f ()]
For a hall of the period, fro-m (30) ‘.;-md Eq (33) we obtain
QAm =AW= —25, f (%‘-Tdt.
Using (31), we can write

dx
(34) ~=-=2kcn (t—0)

and
f (ﬂ—j)“d::zw f en® (t—a)dt,

where ca{ -} is cosine of the amplltude {Jacobi's elliptic {unction).
Noting, that fcnz(t a)dt— k2 (E{am{f—0o), By— (} — E){f—0a)}] and

am [t—o+2K(k), Kl=am{f—u, &)+r, E(p+x, &)=E(e, )+ 2E(k), where E(-,-)

(KR - ik
is in complete elliptic integral of second kind, hence. f cn¥(f —a)dt = —k%
Q
X [2E(&) — (1 —EM2K(%)].
Fm_' the half of period we have

(35a) 2Am =AW = —165, [E(k)—(1 — 3K (&),
{350) Ak=— 48“ [B(R)—(1—£&2) K(k)].
In the case of small &, 0< k<1, we can find
TR ek L asakmy 5 ' |
(36) j cni(t— u,)dtw: “cos¥{t — a)dt =—--
. r 0 : .
Combining Egs. (34), (35a) and (36), we obtain for the half «of period
{37) Amo~—2ndn, Akoe—nd k.

Let us introduce the followirng designations:

At:ia“‘td.n-i-l Lins Mmﬂzt-mﬂ—fgsﬂ-
i0



The bordering points are x-= 44 and the semi-periods are symmetrical
with respect of the time points fenmex and 4o, wex (see the Fig. 1)

For.{ f,=t4n,max } we have 0 :{ ¥+ }%.

t= t‘in-{- 2,max

Using (30) we can determine

sin _JQC.
(38) @=arcsin{ ——/-
Combining Egs. (29) and (38) we find
sin ..g_
(39) Atip=2|F(5-, k)—Flarcsin—=, &)

zQ[K(k}— F(% k)].:@[ K(k) — _2%]

sin _d_

(40) Alipya=2 ’_F (—;—, k) —-F(arcsin—?r"—, k)] = Aty [K(k)—%],

where F(-,-) is incomplete elliptic integrai of the first kind.

The expressions (39) and (40) are valid when k?sin—'é--

Further we use the approach developed in [15] on the basis of stitching
the solutions,

In the region |x|<d, noting that d<1, we can use the linear approxi-

mation of the equation (26), i e-%;'i"%a% +x':_—'—2{;— sinvi and its solution in
the form
£
—5 g 2d .
x=Re 4 sm[u:o(t—~,f)]—:~\/(vsa o sin (vi+ @y},
LRy o
vhere w==\{1—82
2\’84

Let us assume that v>1, then ¢u=arctgv2_l—|—n.
When 0<8,<1! and v=1, the frequency w~1 and

P P
x=~R sin {{—v) + ﬁ sin vi, %:Rcos E—vy+v _IE‘;— cos vt .

Now, let us consider the region out of the acting zone [—d, d'],‘ but clo-
sely to that zone, i e. |x|>d, | x|~d.
Under these conditions we can write:

x="2aresin [k sn ({—o}] = 2arcsin {k sn [2K(k)—({—0)}} = 2&[2K(k) — ({—0a)].
It follows that the moment #,,,, can be found from the equatjon
(41) 22K — (Lypr — )]
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ax
when —d—é—.z-—%.

From the condition of lacking of x and % interruption in the ;ﬁoint
t=t‘n+1, it fOHOWS -

P
o od .
{42a) Rsin (tdn-i-l_v)'*'l__g-_"? Sin Vg, 17,
P
o
(42b) Rcos (taln'l-l :‘Y) +v T2 COS V2 ypq o — Qki.ﬂ-l'

Solving the system (42) we can obtain formulae for R=Ry,4; and y=1v,,.,.
Analogically, when going out of-the acting zone, i. e. for the paint
E=tippe=tiper + Ay, wher::

(43) CAlpp1=tinse— bty
we can write
P

. 2d
(44a) | Rsin (t4n+1+Atin+1"“Y)+'l_f__\;f S [V{taps + Ay }lo—d,
L _ .
) ! 1F d i . =1 T 15 1] = el
(44D) | R cos (fypir+ Atypyy —7)+ YTz:\;E €08 [V{Ziner T Ay )i — 2R, g,
If

(45) E ' . V./_\t4ﬂ+l*’:§_' I s
the equations (42) give Af,,, =~ n 24 - =
—Rcos (tmﬂ—y)+v_liivé. COS VL 1y

Taking into account Eg. (42b), Expr. (43) becomes
d
(46) M-Lnﬂzk— .
13 dntl

Let us introduce the designation

(47) ARy Ripr— Ry
Compatison (47) with (37) reveals Ak —a8 ks,
ansi.der_ing;(?)g),. we can write

(48) Aty 2K (Bjp) — -

dr
- Using Eq, (44b), under the condition (45), we find.

§ - .F . . LA 1 ok
(49} k4n+2’—‘-"7{— R:COS_ (t4n+1—_ YH‘ RAL; 141810 (Fi01—7)
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P P

o Ve _.__..
d
F Vg7 COS Vi — At4,,+1 sm Vinst }

Substituting Egs. (42) and (46) in Eq. (49) we obtain

P .
(50 , Fanss™Ryppy — o Sin vl
dnti
Analogically we can write the following equations
(51) At{n{-ﬁ—-z}{(k‘in-!-ﬁ) — ’
{n+2
(52) Ay s 42— T8 Ryegs
(63} _ k4n+3=k4a-§-2'175k4n+2*

bin+a=tiprat Alyprg.
For the region dn+3—4n+4 (see Fig. 1) we have (R=Rintsr Y="inss)

P
(54a) R sin(f, 45— Y) ”"Qd—l' sin Vt4n+3:-:_"—d!_ .
N ) :
(54b) Rcos (t;n;a—y) —v ?fi—l' cos wf,,ﬂ;az%m;_s,
\ binte=tings+ Alyes, | :
| ﬂ
(552) | Rsin{fipeat Aipsa— 'Y)—-. SN V{#4n 48+ Afygg)=d,
P

' 2a
(55D} | Rcos ({45t AMyppa—7y)— Va_p COS V(f4n+3+Af4;z+a)—2k4u+4

Assuming, that
(56) o VAL ra2 1,
and combining Eqgs. (54a) and {55a) we lind

2d
Af&rﬁaﬁ—-"’ P

Rcos(t, 24

ines ™)~ VT % Vlnia

From (54h) it follows
- d
(57) ik _ M{ni»s—-k ” t4n+d—“'tin+3+At4n-|3
Taking into account Egs. (52) and (50), we can write

k-{-n‘i-?Zk‘in - dek‘in sin vthri—i

B2
4k4n

Con31der1ng the condition (56) Eq. (55b) can be rewr:tten

13



p
1y 2d
{58) k4n+¢“—"—2" Rcos (inps—Tenpa)— v A oS Vipta

P

2d
—RAL 380 (fpa— 1)+ V2 i DlinraSin Vg ¢

Using Eqs. {(54) and {58) we can write -
(59) Eomsithsnss o Uf’ SiN Ve
Comparison (59) with (52) and (53) 1eveals
Bt Zhipsa— Wit g5 i S Vg
Combining Egs. (46} and {48} we find
tunra™] 2K (k) ~ -+ 52— +t4,,_2r<(ku>+tm.
In analogue from Eqs (51) and (57) we can obtain
Linta= [QK(kmn) P :+2] ﬁg-{-t‘,ﬁg";ﬂ}((k‘mﬂ)+t4,;+2.

In the long run we havc obtained the following system of equations:

(60a) tons it an+ 2Kk )y

(60b) Baigmboan— T8 gy — %n sift VEipian
160¢c) tipra™bin o+ 2K(By s r)s

(604) Bansihinss—T0 g pa 4ki — sin Viip

The spectrum of possible stationary amplitudes of continuous oscillations
is determined by the expression:

(61} V(lipas—tin)=2N,
where N=1, 2, 3,... is the ratio of frequency division.
The equation (61) can be written also in the form
VIK(Rg, )+ K(&gy2)] ==V

Below we show that N has to be an odd number,

Designating five successive time points as £, &, 5 f3 and £, and corres-
ponding values of & as &, Ay, ks ks and &, (in analogue to as it has been
done in Fig. 1), we can write the following conditions for the stationary mode

(62&) k4=ko,
{62b) vt —1,)=27N.
The eguation (62b) follows from the condition of oscillation synchronization

with the exfernal excitment.
The Egs. {60} can be rewritten

14



k3=k0—n8dko-—_z‘:; sin vig, k.= kg—frﬁdk,+£-sin vig
] ]

ty=ty4+2Klke)r  ti=ty+2K (k).

If we consider the condition of symmetry between the upper {4n—4n+2}
and lower {4n-+2—4n+ 4} periods, we can find that it is possible to have the
syminetry only if N is an odd number, i. e. N=2/+41, {=0, 1, 2, 3,..., and
if the next equality is fulfilled: sin v[f+ 2K(k)]= —sin vi.

From Egs. (41) and (42) it follows QvK(ke)=2ﬂ(£+%) and

(633) sin \-"t(]: —Sin \c’tg,
{63b}) €08 Vi, = —COoS Viy.
Combining Egs. {35b), (62a) and (63) we can write
168 '
(64) —p “[Ekey)— (1— kHK ()] —sin vé, =0,
which in the case of 2—0 becomes
And 4%
(65} R}f ®_ sin vt,=0.
Sclving Eq. (65) we can determine the initial phase £,
Apparently there exists an exeitation threshold,
(66) | P| >4n it

For the P values above the value P=4nd,22 a disctetization of the possible
stationary oscillating amplitudes appears. :

It is interesting to note that the threshold condition (66} coincides with
the analogical condition (21), obtained for the case when the nonlinearity of
the external harmonic excitement is presented by $-function,

As we have assumed the solution symmetry, for the sake of system stabi-
lity examination it-is enough to consider only a half or the period.

From Eg. (60b) we determine the variation "

Sbypn= ( 1 — s, +—- —sin vtmﬂ) 84 — V e (COS VEy40)Phi 05
4k, 4 in i

Taking into account the relation {16] dES?:%[ ﬁﬁz — K{&} ] and also the

approximate formulae E()= {1 —%) + O(k"), K(#)=5{! +%)+O(k4) we

can write
(67) TRl T+ 00,

Considering (67), from (60c) we can find the following variation:

dK(% ) ' P
St-mﬂ = 5t-in+‘1 + Q*dge_)skmu == %k;_.,“ (1 5 ?1'3,z+ Ikr

dn

sin Vf4a+2)3k;n



&
+ (1 _%vp ;”“ cos Vf&n-i—n) 84,10

in
Remembering that &,, 4= k,,= &, 5i01 vt:j“,“ = —sih vf,, CO8 VL, q=—C08Vly,

Psinvt .
trom Eq. (64) follows that SVl L Psinvh

- = — =8, 50, We can wrile
442, 42 e

B o= (1— 208 )i Vg (€OS VE)S ity
8t inrs =5 ko 1— 218, By, + ( 1+ vPeos vi, )8t4,,+,.

Let us assume that 6k4n+2: l&kh, and 6t4ﬂ+4=7\.8!4ﬁ+2.
Hence we can write

(1 =278, —1) kg, +v Z% (CoS VE)5t 1 p =0,
i T
L ko (1— 28 )0k, + ( { +2-vPeos vto—l) Bt 49 =0.
The characteristic equation has the form

—M2—2n8, 4 —- v Pcos iy )+ {1—2n8,)=0
a 3

and its solution is

Apg=1—mb, 4 %vpmsvto i\/ I—-—?tﬁd-I-%\r'P Cos vto)s— 14-2x6,,.

The stability condition is: |4, 4|« 1.

Apparently, the solution is stable when the following condltlon is satistied
Pvcos v, <0,

Generally, we have proved that in the system under consideration oscilla-
tions with an amplitude Irom a possible set of stable amplifudes can be excited,

The spectrum of the symmetrical solution amplitudes can be expressed as

QVK(}BQ)=2TC(£-{:—%), {=0, 1, 2, 3,..., which gives the spectrum of amplitudes
or Klko)= (14
N=21+1,10=0,1

% =0, 1, 2, 3,... and an odd ratio of frequency division
5 .

!
3.

Conclusion

It should be noted that the relation v=MNu; is complied
with in all cyclic accelerators; there v is the accelerating high-frequency field fre-
quency, @ is charged particles rotating frequency, and N is acceleration, multi-
plicity reaching tens and hundreds. That is why, the above discussed stationary
oscillations are analogous to the movement of “equilibrium™ particle in cyclo-
accelerator. Particles, close to the equilibrium, in cycloaccelerators perform
slow phase ascillations. Their analogue in our system is the fluctuating appro-
ximation to stationary values of the oscillation amplitude and phase. In our

6



problem, the phase oscillations damping is determined by the friction coeffi-
cient 8, while in charged particles accelerators damping is result of radioemis-
sion. Here, v, N and o, are constants, however in the cycloaccelerators the
process of charged particles acceleration is accompanied by increase of v
(phasotron), N (microtron), o, (synchrotron) or v and o, (synchrophasotron).
Injection in acceleration mode (for accelerators) and in stationary oscillations
mode (our system) represents a separate problem [14].

The presented mechanism of continuous oscillations excitation allow to
examine from this position the processes of plasma particle interaction with
electromagnetic waves. For example, equation of (1) form is obtained with
right-hand Fy(x, ¢,)=E cos kyx sin vt,; in this case §,=w; is jon-electron-neutral
atoms collision frequency and o, =A;g is ion cyclotron frequency, ¢ is electron
charge, M is ion mass, C is light velocity. This is the case of electromagnetic
wave interaction with particle in cylindric waveguide with longitudinal magne-
tic field B and £ type wave. If, for example, v=Nw, UHF oscillation is trans-
formed into low-frequency oscillation oo, then the corresponding correlations

between £ and £, (longitudinal electric field) is: E= % F, R
A

is Alfvéen ve-

b
where Q,,=4RCLM&’ is Langmuir plasma frequency, V, = J%‘;M
locity, #,, is plasma density. The condition for plasma heating is defined as
© OFRN
EO>—?1- ‘m{i . where R, and I, are the waveguide radius and lenght,
R ?

=.4 — A2 N
N-—- 0)0’ mp—r-4ﬂ£}e74-‘

Examination of the process of energy transformation efficiency in the
centimeter, IR and optical wavebands in low-frequency osciilations demonstrates
the potentials for generation of powerful low-frequency waves in the Solar
system near-planet space.

So, simple modelling systems and mechanisms of oscillation excitation are
presented that may contribute to the revealing of mechanisms of planetary
magnetosphere radiosources generation and wave interactions mechanisms in
the Earth ionosphere and magnetosphere as well as the excitation of VLF
waves in the near-Earth space.
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BosByxaenuc ,KpantoBavupx® Koachanuii  MOA
BO3JEHCTRBHEM BHEIIHEH UeOAHOPONHOH CHIIBI

Baodumup Homeos, Ilemp [eopeucs

{(Peasiwwe)

AHAAUTHYECKK TPEUCTABJACHO ABJAEHHE BO3OYKACHHA le-
3ATYXAIAX KOMESAHHN ¢ aMIIMTYNOH, TPHNAAICKAICH K JIMCKPCTHOMY DALY
BO3IMOMHBIX yC'l‘OI::II{PIBbIX AMILIMTYJL s ABYX ClHydaeés -— BO-TIEpBBIX, KOTAA
BHEHIHCC BO3ACHCTRUC, NpeACTaBACHHOe S-PyHKUHEH, MpHKAAALBACTCA K THX-
nefl paBHOBECHOH TOUKE TpAeKTOpHH KogeHadnw#d U, BO-BTOPLIX — KOTAA BOCUI-
i1sT TAPMOHMYECKARN CHa Bosnei&(:'rsye'r [} S?lﬂ,aiifl(}f:’{ 30HC TpaEKTOPHH ¢ Kolley-
HOM MPOTHKCHHOCTLIO.

l’lpe;xu ABJAEHHLIC MOAEAbLHAS CHCTEMA H MEXAaHM3M BO3BYXAEHHH Koaebaink
MOTYT HAATH HPHMCHEHHE B paﬁore MG BLISIBJSHHK MEXAHHIMOR i‘(.HGan,HH pa-
AMOHCTOUNKKOR B MAIHWTOC(EPAX NAANET U MEXAHH3MOD B3aUMONCHCTBHS BOJI
B jioHocdepe u marauTochepe 3eman, a Takike sosOyxaenus HY posu B oKoO-
JIO3EMHOM IPOCTRALCTBE.
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